
www.elsevier.com/locate/jcp

Journal of Computational Physics 194 (2004) 611–631
A finite element method for unstructured grid smoothing

Glen Hansen a,*, Andrew Zardecki a, Doran Greening b, Randy Bos b

a Computational Science Methods Group, Applied Physics Division, MS F645, Los Alamos National Laboratory,

Los Alamos, NM 87545, USA
b Materials Science Group, Applied Physics Division, MS F699, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 12 December 2002; received in revised form 22 September 2003; accepted 22 September 2003
Abstract

The finite element method is applied to grid smoothing for two-dimensional planar geometry. The coordinates of the

grid nodes satisfy two quasi-linear elliptic equations in the form of Laplace equations in a Riemann space. By forming a

Dirichlet boundary value problem, the proposed method is applicable to both structured and unstructured grids. The

Riemannian metric, acting as a driving force in the grid smoothing, is computed iteratively beginning with the metric of

the unsmoothed grid. Smoothing is achieved by computing the metric tensor on the dual mesh elements, which in-

corporates the influence of neighbor elements. Numerical examples of this smoothing methodology, demonstrating the

efficiency of the proposed approach, are presented.

� 2003 Elsevier Inc. All rights reserved.

PACS: 1991 MSC: 65M50; 51P05; 65N30

Keywords: Finite elements; Galerkin methods; Mesh generation; Elliptic smoothing
1. Introduction

Grid generation methods continue to advance to meet the needs of models involving more complex

phenomena on intricate computational domains. There are two primary areas of interest when considering
approaches to grid generation and optimization. The first area concentrates on the generation of the

‘‘initial’’ mesh. This mesh is designed to meet the geometric requirements of the domain and problem for

the first cycle(s) of the simulation process. For example, it is necessary to ‘‘stretch’’ the mesh uniformly

across the domain without excessive concentration of mesh in any particular area. Furthermore, the mesh

must ‘‘fit’’ the internal and external boundaries of the domain, and provide sufficient accuracy in the initial

stages of the computation. In this phase, there are significant interactions between mesh geometric qualities

and early time solution criteria, with the computational robustness of the initial mesh being of paramount
*Corresponding author. Tel.: +1-505-667-0655.

E-mail addresses: ghansen@lanl.gov (G. Hansen), azz@lanl.gov (A. Zardecki), dgreening@lanl.gov (D. Greening), rbos@lanl.gov

(R. Bos).

0021-9991/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2003.09.014

mail to: ghansen@lanl.gov


612 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
importance. The second area of mesh generation is concerned with ‘‘optimizing’’ an existing mesh (likely

obtained from a previous solution step) to meet the requirements of the simulation in progress. The geo-

metric fidelity of the previous mesh is assumed to be adequate, thus solution criteria become a larger
consideration as the simulation progresses. In application, there is not a distinct boundary between the two

approaches, but a blend where the influence of geometry decreases and solution criteria increases. The

proposed finite element method is currently targeted only at the area of initial mesh generation and is

limited in function to capturing the domain geometry details.

There is often a diverse set of requirements that the initial mesh must satisfy. One area of interest

concerns detailed simulations of high speed flow regimes involving the formation of strong shocks in a

multi-dimensional computational domain. Problems of this nature are quite challenging as they are often

described by large values of geometric curvature which mandate a hybrid unstructured mesh topology.
Furthermore, there are constraints imposed by the solution on mesh features in the neighborhood of do-

main boundaries and shock fronts and accuracy concerns require bounding mesh anisotropy within geo-

metric regions. It is also necessary to insure a repeatable initial state across the problem set of interest. To

provide a predictable initial state on identical problems, it is necessary to fully converge the appropriate

grid generation method. Furthermore, there is also merit to beginning the simulation from a converged

mesh state even if the problems are distinct.

Elliptic grid generation methods have shown themselves to be quite effective for robust initial mesh

generation tasks on structured grids. Elliptic methods, when control functions are included, effectively
equidistribute the mesh across complex domains. Current approaches do not lend themselves well to ap-

plication on unstructured meshes, due to the assumption of a global parameter space for the evaluation of

the elliptic operator and the metric terms contained in the control functions. To address these issues while

maintaining the strengths of the elliptic grid generation method, the proposed approach is based on de-

veloping a finite element analog of the method. The finite element approach allows expressing the elliptic

operator without assuming a global mapping between a logical space and the physical mesh coordinate

system. However, it is not clear that the space metric may be approximated by using only information local

to an element, as the metric tensor is explicitly defined using a global mapping. Results indeed show that
when an approximation using only the local element metric is employed, the mesh is stationary. Thus, the

proposed approach globalizes the metric approximation by considering information obtained from the

location of the centroid of neighbor elements. This approach also allows the freedom to impose an external

quality metric which adheres to a particular global strategy (e.g. to impose orthogonality metrics).
2. Mathematical basis

Unstructured grid generation was developed to support the use of the finite element method in structural

modeling [1]. Formally, the distinction between structured and unstructured grids may be formulated by

describing the connectivity type; i.e. by defining the connectivity between grid vertices. Following Frey and

George [2], a grid is structured if its connectivity is of finite difference type; otherwise, the grid is un-

structured. Stated differently, a planar domain on which a structured grid has been established has a global

coordinate system ðu; vÞ mapping a logical square in the ðu; vÞ-plane into a region in the ðx; yÞ-plane.
Both the theory of Riemann surfaces [3] and modern differential geometry emphasize the local properties

of a differential manifold, which is a topological space resembling Euclidean space locally [4]. In this ap-
proach, for each point p of the manifold M , there exists a local homeomorphism, called a chart, from an

open set in Euclidean space to an open neighborhood UðpÞ of p. In many cases, such as geometrically

complex domains discretized with an unstructured mesh, it may be intractable to define a global coordinate

system as a basis for a mapping between logical and physical space. It is, however, generally possible to

introduce local coordinates ðu; vÞ in the neighborhood of a point. A collection of local coordinate systems,



G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 613
such that their associated neighborhoods cover M , form an atlas. A differentiable manifold affords a

definition of differentiable functions and of a local metric structure. A Riemannian manifold is a differ-

entiable manifold on which a metric form is defined.
This development is limited to manifolds that are Riemann spaces, which may locally be described by a

metric tensor gabðu; vÞ. The metric tensor, through the underlying differential equations, controls the

character of the grid. In the context of the finite element method, the local structure of the manifold was

discussed in the article of Lautersztajn and Samuelsson [5]. The goal of this paper is to apply the finite

element method to grid smoothing. The initial grid allows the estimation of the initial metric properties of

the mesh, and provides a structure to compute the effect of neighboring elements on the metric tensor of the

element under consideration.

For unstructured grid generation Knupp [6] applied the Winslow elliptic smoother using the finite
difference approach. The finite element method was applied earlier by Allievi and Calisal [7] and Tipton

[8], and additionally noted by Knupp. The results of Allievi and Calisal are restricted to orthogonal

grids, in which the off-diagonal components of the metric tensor are neglected; furthermore, their shape

factor, defined as the ratio of two remaining components of the metric tensor, is not related to the

geometry of the neighboring elements. Unlike Tipton, who modifies the stiffness matrix by setting to

zero the terms responsible for interaction between physical and unphysical modes, the algorithm pro-

posed here is based on a geometric approach. The actual components of the metric tensor are replaced

by the target components, derived from the interaction between the current element and its neighbors.
Furthermore, the Winslow grid smoother is extended by including the derivative (curvature) terms of the

metric tensor. As discussed in the next section, this is equivalent to employing the Thompson–Thames–

Mastin grid generator.
3. Two-dimensional boundary value problem

Consider a planar domain D in Euclidean space ðx1; x2Þ, where ðx; yÞ may be written as ðx; yÞ and ðu1; u2Þ
expressed as ðu; vÞ. The domain D is defined locally in terms of parametric equations

~x ¼~xðu; vÞ; ð1Þ

with a length element given as

ds2 ¼ d~x � d~x ¼ ~xu du
�

þ~xv dv
�
� ~xu du
�

þ~xv dv
�
: ð2Þ

Eq. (2) may be written as

ds2 ¼ Edu2 þ 2F dudvþ Gdv2; ð3Þ

where E ¼ ð~xu �~xuÞ, F ¼ ð~xu �~xvÞ, and G ¼ ð~xv �~xvÞ. The coefficients E, F , and G of the first fundamental

form are identified with the covariant components g11, g12, and g22 of the metric tensor [9]. The contra-

variant components gab are obtained by inverting the matrix gab

gacgcb ¼ dba ; ð4Þ

where dba denotes the Kronecker delta symbol. Throughout, Einstein�s summation convention is used, where

summation over repeated indices is implied. Since ds2 is always positive, the determinant

g ¼ g11g22 � g12g12 ð5Þ

is also positive.



614 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
The following employs the homogeneous Thompson–Thames–Mastin elliptic grid generator [10], which

may be introduced in a general framework of the harmonic coordinates requirement. For i ¼ 1; 2, xi is a
function of ua, a ¼ 1, 2. The harmonic coordinates xi are defined by the condition

Dxi ¼ 0; ð6Þ
i.e. as two solutions to the Laplace equation. In Eq. (6), the Laplacian operator acting on scalar variables xi

may be represented as [11]

Dxi ¼ 1ffiffiffi
g

p
o

oua
ffiffiffi
g

p
gab

oxi

oub

� �
: ð7Þ

A development based on harmonic coordinates generalizes naturally to three or more dimensions [12].

Additionally, this form of the governing system, in conjunction with the concept of local maps, leads di-
rectly to an implementation applicable to unstructured meshes.

When the right-hand side of Eq. (7) is expanded, using Eq. (6), one obtains

gab
o2xi

ouaoub
þ Dua

oxi

oua
¼ 0: ð8Þ

Here

Dua ¼ 1ffiffiffi
g

p
o

oub
ffiffiffi
g

p
gab

� �
; ð9Þ

denotes the Laplacian operator acting on ua.
Reverting to the notation ðu; vÞ, using subscripted variables x and y to express partial derivatives with

respect to u and v, and further defining P ¼ Du=g22 and Q ¼ Dv=g11 results in

g22ðx11 þ Px1Þ � 2g12x12 þ g11ðx22 þ Qx2Þ ¼ 0; ð10Þ
g22ðy11 þ Py1Þ � 2g12y12 þ g11ðy22 þ Qy2Þ ¼ 0: ð11Þ

Eqs. (10) and (11) define the Thompson–Thames–Mastin grid generator, with convective terms P and Q
[13].

The system of Eq. (8) or, equivalently Eqs. (10) and (11), are approximated given the boundary con-

ditions that prescribe the grid at the boundary oD of the domain D. In other words, it is necessary to solve

Eq. (8) for xi subject to

xi ¼ x̂i ð12Þ

on oD. The finite element method is based on a variational formulation of this boundary value problem. A

detailed derivation of the general method is given by Becker et al. [14]. As noted by Reddy [15], one may

write a weighted-integral form of a differential equation, even if it is not possible to construct a functional

whose variation is equal to the variational form.

The method of weighted residuals is based on multiplying the left-hand side of Eq. (6) by a sufficiently

smooth test function w, integrating this result over D, and then setting the weighted average equal to zero.
The integration will be invariant with respect to coordinate transformations if an invariant area elementffiffiffi
g

p
d2u (where g has been introduced in Eq. (5)) is used [16]. With the aid of Eq. (7), this procedure gives the

weak form of a boundary value problemZ
D
w

o

oua
ffiffiffi
g

p
gab

oxi

oub

� �
d2u ¼ 0: ð13Þ



G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 615
On integrating by parts and using the Gauss divergence theorem, one obtainsZ
D

ow
oua

ffiffiffi
g

p
gab

oxi

oub
d2u�

Z
oD

w
ffiffiffi
g

p
gab

oxi

oub
dsa ¼ 0; ð14Þ

where dsa ¼ na ds is a covariant oriented line element, and na are the components of the unit outward

normal.

The essential boundary conditions, given by Eq. (12), enter the problem through the definition of the

classes of admissible functions. In this development, the choice of test functions is limited to functions w
that satisfy w ¼ 0 on oD. The solutions of the variational boundary value problem are therefore the

functions xi satisfyingZ
D

ow
oua

ffiffiffi
g

p
gab

oxi

oub
d2u ¼ 0; ð15Þ

such that xi ¼ x̂i on oD. These functions form the problem state vector.
4. Finite element approximation

In the Galerkin procedure [15], both the weight function w and the state vector xi are represented as finite
linear combinations of basis functions wnðuÞ:

wðuÞ ¼
XN
n¼1

bnwnðuÞ; ð16Þ
xiðuÞ ¼
XN
n¼1

ainwnðuÞ; ð17Þ

where bn and ain are the expansion coefficients. Since the bns are arbitrary, Eq. (15) implies an algebraic

equation

XN
n¼1

Kmnain ¼ 0; i ¼ 1; 2; ð18Þ

where the stiffness matrix Kmn is

Kmn ¼
Z
D

owm

oua
ffiffiffi
g

p
gab

own

oub
d2u: ð19Þ

When the region D is partitioned into finite elements D ¼ fDeg, one obtains the stiffness matrix associated

with the element De

Ke
mn ¼

Z
De

owe
m

oua
ffiffiffi
g

p
gab

owe
n

oub
d2u: ð20Þ

Here we
m and we

n represent restrictions of wm and wn to De. In the following, each cell Dx
e in the physical ðx; yÞ-

plane is viewed as a local image of a unit cell Du
e in the ðu; vÞ-plane generated by the mapping xi ¼ xiðu; vÞ.

For the quadrilateral grid, the cells in the ðu; vÞ-plane are obtained as linear or quadratic maps of the square

master element Dn
e in the ðn; gÞ-plane satisfying �16 n6 1, �16 g6 1. An explicit form of this map may be



616 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
derived with the use of Ne shape functions for a master element with M nodes. For example, the bilinear

shape functions are:

u1ðn; gÞ ¼
1

4
ð1� nÞð1� gÞ;

u2ðn; gÞ ¼
1

4
ð1þ nÞð1� gÞ;

u3ðn; gÞ ¼
1

4
ð1þ nÞð1þ gÞ;

u4ðn; gÞ ¼
1

4
ð1� nÞð1þ gÞ:

ð21Þ

If ðuem, vemÞ and m ¼ 1; . . . ;M are the coordinates of the M vertices of Du
e , the mapping of the master element

onto Du
e is given as

ue ¼
XM
m¼1

uemumðn; gÞ;

ve ¼
XM
m¼1

vemumðn; gÞ:
ð22Þ

In the case of an isoparametric map [14], the basis functions used in calculating the local approximate

solution are the same as the shape functions used in defining the coordinate map, Eq. (22). Therefore, in
this case, the basis functions in Eq. (20) may be identified with the shape functions introduced in Eq. (21),

resulting in M ¼ Ne. Due to tensorial character of Eq. (20), this form remains invariant when the variables

of integration are changed from ðu; vÞ to ðnaÞ ¼ ðn; gÞ. This gives

Ke
mn ¼

Z
Dn
e

oum

ona
ffiffiffiffiffiffiffiffiffi
gðnÞ

p
gabðnÞ oun

onb
d2n: ð23Þ

In Eq. (23), gabðnÞ are the contravariant components of the metric tensor associated with the element De.

From the mapping of the master element to the element Dx
e in the physical plane, one may obtain gabðnÞ [5].

In Fig. 1, Dx
e may be viewed schematically as an image of Du

e or, alternatively, of Dn
e . Denoting the coor-

dinates of the vertices defining Dx
e by ðxem; yemÞ, one obtains

xe ¼
XM
m¼1

xemumðn; gÞ;

ye ¼
XM
m¼1

yemumðn; gÞ:
ð24Þ

With the notation~r em ¼ ðxem; yemÞ, the covariant components of the metric tensor associated with De become

geab ¼
XM
m¼1

XM
n¼1

~r em �~r en
oum

ona
oun

onb
; ð25Þ

which allows the evaluation of the stiffness matrix for element De.

This section provides the explicit formulas for the stiffness matrix assuming a quadrilateral grid. When

the mesh elements are triangular or of mixed type, a similar derivation may be performed by using the



y

u

ξ

Fig. 1. An element De in the physical plane ðx; yÞ viewed as an image under linear mapping of an element Du
e in the ðu; vÞ-plane or,

alternatively, of the master element Dn
e in the ðn; gÞ-plane.

G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 617
isoparametric basis functions relevant to triangular elements. For the sake of completeness, one may ex-

press linear shape functions as:

v1ðn; gÞ ¼ 1� n� g;

v2ðn; gÞ ¼ n;

v3ðn; gÞ ¼ g;

ð26Þ

which replace Eq. (21). In numerical computations, both linear and quadratic shape functions were em-

ployed. In the quadratic approximation, nine-node shape functions were used for quadrilaterals and six-

node shape functions were used for triangular elements. Their explicit form may be found in [14,15].

The global stiffness matrix Kmn is obtained from the local stiffness matrices Ke
mn corresponding to element

De through the assembly process. Algorithmically, this is implemented by defining a connectivity array Cek,

which lists the vertices having coordinates ðxek; yekÞ associated with element indexed as e. Given the nodes m
and n, the element Kmn of the stiffness matrix is then a sum of contributions arising from the elements

comprising m and n. Schematically, this is written as

Kmn ¼
X
e

Ke
mn; ð27Þ

where the sum extends over the elements that contain m and n. The approximate grid coordinates are

obtained by solving Eq. (18), subject to a boundary node Dirichlet condition (all nodes on domain

boundaries are fixed at the given initial coordinates).
5. Metric tensor

The evaluation of the element stiffness matrix as given by Eq. (23), involves the evaluation of a local
metric tensor on the manifold. As implied by Eq. (25), geab is known only within an element. Given an initial

grid, Eq. (25) allows one to compute geab consistent with the grid. The grid thus obtained by solving Eq. (18)

does not differ from the initial grid. Stated differently, with the metric tensor determined by the initial mesh,



618 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
no grid smoothing is accomplished. There are at least two ways out of this predicament. First, one may

distinguish between the current and a target metric. Whereas the current metric is computed from the

unsmoothed initial grid, the target metric may involve the consideration of ancillary information, such as
the orthogonality condition geng ¼ 0. Second, by analogy with various structured grid generators, one may

employ a metric prescription resulting from a predictive procedure involving several elements. This

approach is conceptually similar to the reference grid method employed by Castillo et al. [17].

Essentially, this method computes the components of the metric tensor on a dual mesh. Given an ar-

bitrary quadrilateral element De, consider the line segments connecting the center O of De with the four

centers of its neighbors, as shown in Fig. 2. The four nodes denoted by 1, 2, 3, and 4 correspond to the

points ð�1;�1Þ, ð1;�1Þ, ð1; 1Þ, and ð�1; 1Þ of the master element in the ðn; gÞ space. The original definition
of the metric tensor components, Eq. (25), identifies (for bilinear shape functions) the component g11 at the
center of De with the square of the arithmetic average of vectors 1; 2 and 4; 3. This observation suggests a

modified averaging procedure of the form

g11 ¼
1

2
P4P2

� �
� 1

2
P4P2

� �
: ð28Þ

The notation in Eq. (28) implies that one half of the vector P4P2 is used to form a scalar product with itself.

Similarly

g12 ¼
1

2
P4P2

� �
� 1

2
P1P3

� �
; ð29Þ
g22 ¼
1

2
P1P3

� �
� 1

2
P1P3

� �
: ð30Þ

The topology of a triangular element requires a slight modification of the outlined procedure. Again, the
nodes 1, 2, and 3 (see Fig. 3) correspond to the points ð0; 0Þ, ð1; 0Þ, and ð0; 1Þ of the master element in the

ðn; gÞ space. The components of the metric tensor at the center of De now become
4

O
De

P1

P2

P3

P4

1

2

3

Fig. 2. The vertices 1, 2, 3, and 4 of a quadrilateral correspond to the local labeling (coordinate system) of element De. Given the

locations P1, P2, P3, and P4 of the centers of the neighbors of De, drawn schematically using dashed lines, the components of the metric

tensor are obtained by forming appropriate scalar products of the vectors P4P2 and P1P3.



e

O

P1

P2

P3

1

3

2

D

Fig. 3. The vertices 1, 2, and 3 of a triangle correspond to the local labeling (coordinate system) of element De. The centers of the

neighbors of De, drawn schematically using dashed lines, are denoted by P1, P2, and P3.

G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 619
g11 ¼ OP1 � OP1;
g12 ¼ OP1 � OP3;
g22 ¼ OP3 � OP3:

ð31Þ

In a sense, the metric tensor computed from the smoothing procedure may be considered as a target metric

tensor, in contrast to the current metric tensor computed from the actual grid. In some situations, when
dealing with triangular elements, a smoother grid may be achieved by identifying the target components of

the metric tensor with the components corresponding to an equilateral triangle.

As outlined previously, the finite element system (Eq. (18)) is solved, given the above metric prescription.

This system also requires boundary conditions for the state vector, x and y. In this paper, the domain

boundary nodal coordinates are fixed at their initial locations (Dirichlet condition). When prescribing the

metric, it is also necessary to provide a boundary condition on the metric tensor at the domain boundaries.

Three types of behavior at the boundary are potentially useful:

1. Fixed boundary spacing to some input d (may be a function of the parametric location on the boundary).
This is a Dirichlet condition on the metric along the boundary.

2. Specification of coordinate line slope at the boundary (i.e. the grid should meet the boundary normal to

the bounding geometry). This is a Neumann condition on the metric at the boundary.

3. Continuous metric at the boundary. This condition states that the metric curvature slightly ‘‘outside’’ the

boundary should be continuous with the curvature just inside the boundary.

Combinations of these possibilities might also be useful, for example specifying d to indicate the

thickness of the boundary row of cells (a Dirichlet value for g11), specifying that the grid should be or-

thogonal at the boundary (a Dirichlet g12 ¼ 0), and specifying that the cell height should ‘‘float’’ (a Neu-
mann g22).
6. Solution procedure

If the metric tensor gab is expressed in terms of the basis functions as in Eq. (25), then Eqs. (6) and (7)

may be expressed as a linear system of the form

K~u ¼ ~f ; ð32Þ



620 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
where ~u ¼ ðx1; y1; . . . ; xN ; yN Þ denotes the nodal state vector, and ~f arises from the imposed Dirichlet

boundary conditions. This linear system may be solved for the coordinates x and y in the most convenient

manner. As was discussed in the previous section, this solution method does not change the mesh state, as
the target metric is simply the current metric. This result verifies that the descriptive metric is quite effective

in capturing the coordinate transformation [8]; the solution ~u is always precisely the current mesh state.

To accomplish smoothing of the mesh, it is necessary to prescribe the target element metric. In this case,

the metric tensor gab is dependent on the mesh geometry as the current state of the mesh is used to for-

mulate the equidistribution strategy. As such, the global problem is a quasi-linear elliptic system, with the

non-linearity arising from the coupling between the target element metric and the solution state vector. In

this case

Kmn ¼
X
e

Ke
mn ¼

X
e

ffiffiffiffiffiffiffiffiffiffiffi
~geð~uÞ

p
~g ab
e ð~uÞ

Z
Dn
e

oum

ona
oun

onb
d2n; ð33Þ

where ~g ab
e are the components of the target contravariant metric tensor for element e, and ~ge is the de-

terminant of the covariant target metric tensor. These target tensor components (Eqs. (28)–(30)) are re-

moved from the element integral as they are not a function of n within the element.

Given this form of the stiffness matrix, one approach is to linearize the system by evaluating the target

metric on the current mesh, then solving for x and y. This method is iterative, as ~ge is only a rough ap-

proximation for the ultimate target metric. In this case, the assembly matrix is evaluated on the current

mesh for the current iteration i

Ki
mn ¼

X
e

ffiffiffiffiffi
~ge

p
~g ab
e

� �i Z
Dn
e

oum

ona
oun

onb
d2n: ð34Þ

This approach solves the linear system

Ki~uiþ1 ¼ ~f i; i ¼ 0; . . . ;M � 1; ð35Þ

where M is the number of iterations required to converge the system, and ~u0 is the initial mesh state. In

practice, however, the convergence rate of this approach is generally unacceptable and it tends to further

degrade with increasing problem size.

A more effective method to solve this system is through the use of a Newton iterative method on the non-

linear finite element problem [18], where the target metric is computed implicitly within the solution pro-
cedure. This approach is based on solving a system of non-linear algebraic equations

~F ð~uÞ ¼
F1ðx1; y1; . . . ; xN ; yN Þ

..

.

FN ðx1; y1; . . . ; xN ; yN Þ

0
B@

1
CA ¼ 0; ð36Þ

where

Fmð~uÞ ¼
X
e

ffiffiffiffiffiffiffiffiffiffiffi
~geð~uÞ

p
~g ab
e ð~uÞ

X
n

Z
Dn
e

oum

ona
oun

onb
d2nun � fm: ð37Þ

Given this form, the Newton–Krylov solution procedure is based on using a Krylov subspace method to

solve the linear system

J id~ui ¼ �~F ð~uÞi; ð38Þ

where



G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 621
Jkl ¼
oFkð~uÞ
oul

ð39Þ

is the Jacobian matrix, and ~F ð~uÞi is the residual vector for the ith iterate. The solution may be advanced to

the next iteration using the expression

~uiþ1 ¼~u i þ d~ui: ð40Þ

Recognizing that the implementation of the Jacobian operator is simplified in this application if the order

of the finite element assembly process and the differentiation operator are interchanged [19], it is possible to

rewrite Eq. (39) as

Jkl ¼
X
e

J e
kl ¼

X
e

oF e
k ð~uÞ
oul

; ð41Þ

where

F e
mð~uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
~geð~uÞ

p
~g ab
e ð~uÞ

X
n

Z
Dn
e

oum

ona
oun

onb
d2nun � fm: ð42Þ

As a stopping criterion, the non-linear iteration is halted when the residual vector is sufficiently small. In

this implementation, the convergence criteria is k~F ið~uÞk2=k~F 0ð~uÞk2 6 10�6, where ~F 0ð~uÞ is the residual

vector on the initial ‘‘guess’’. A block preconditioner toolkit, BPKIT [20], was used to solve the linear

system (38). For all the results presented here, the toolkit�s incomplete LU factorization option ILU(1) was

used as the local preconditioner, with 2 passes of symmetric successive over-relaxation (SSOR) used as a
global preconditioner. There were 16 blocks used in the preconditioner, and the toolkit�s flexible general

minimal residual linear solver (FGMRES) was used as the Krylov solver.
7. Sample results

This section examines the application of the finite element procedure to mesh smoothing. As indicated in

the previous section, the finite element method, based on the local metric tensor introduced by Eq. (25),
essentially reproduces the initial mesh. When a target metric is constructed for element De that uses in-

formation from neighboring cells, motion of the mesh nodes will result. The approach proposed above

essentially equidistributes the metric values g11, g12, and g22 between the element being considered and its

neighbors.

As an illustration of these considerations, this smoothing method was applied to some non-trivial grids

from the Rogue�s gallery of Knupp and Steinberg [9]. In all of these experiments, the initial grid was a

transfinite interpolation (TFI) grid, which may be readily obtained for plane geometries. Fig. 4 illustrates

the TFI mesh for a rectangular horseshoe domain. The grid on the boundary curves provides the boundary
condition x̂ i for the solution.

To smooth the quadrilateral grids in this example set, the method constructs a set of ghost elements

outside the domain by extending lines perpendicular to the boundary at each boundary node point. These

extensions are of length d, a measure of the desired element width at the boundary. For this case, an average

element ‘‘width’’ was computed by examining all the boundary elements. In general, d may be a function of

the parametric location on the boundary curve. These ghost elements are completed by interconnecting the

endpoints of the d-length segments, forming quadrilateral ghost cells. The smoothing algorithm then

proceeds by calculating the target metric for each of the participating elements, and solving the above
quasi-linear system. This procedure results in the mesh shown in Fig. 5.



Fig. 5. The smoothed grid for a rectangular horseshoe obtained from the finite element method.

Fig. 4. The TFI grid for a rectangular horseshoe.

622 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
The difficulty in smoothing a mesh like this horseshoe geometry lies in the large curvature at the upper-

right and upper-left external corners of the domain. Many popular methods (including Winslow) do not

capture this curvature properly, and ‘‘pull’’ the mesh away from these corners (cf. Knupp and Steinberg [9,
pp. 201–202]). Furthermore, several contrasting methods fold the mesh over the internal obstacle.

Additional experiments involving a chevron grid are shown in Figs. 6 and 7. The non-convex nature of

the grid domain, apparent in the middle-right portion of Fig. 6, is again a source of difficulty in generating



Fig. 7. The smoothed chevron grid obtained from the finite element method.

Fig. 6. TFI generation of a chevron grid from the Rogue�s gallery of Knupp and Steinberg.

G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 623
the grid on this problem. As an aside, the results of the finite element method are remarkably similar to the

results of the area and length method [9]. Again, many contrasting methods were not successful on this

problem, as shown in [9, pp. 271–273].

The results on a swan grid are depicted in Figs. 8 and 9. The swan is challenging due to the presence of a

concave boundary (along the top of the domain) and a convex boundary (along the right of the domain) in

close proximity. Again, most contrasting methods ‘‘pull’’ the mesh away from the convex boundary, and

‘‘pack’’ the mesh towards the concave boundary (or fold it over the top), as can be seen in [9, pp. 269–270].
These examples serve to indicate that the finite element method provides qualitative results of compa-

rable or superior quality to popular structured methods detailed in [9].

Figs. 10 and 11 show the performance of the finite element smoother on a more complex domain, a cross

section of a single cylinder overhead valve engine. This example is notable due to its domain complexity,

both in the number of components within the domain and that it contains both convex and concave parts.

Additionally, this problem has a large number of elements with a non-trivial internal boundary structure.

Fig. 10 is the initial TFI mesh, which is of reasonable quality. The lower figure shows the smoothed mesh.



Fig. 8. TFI of a swan grid from the Rogue�s gallery of Knupp and Steinberg.

Fig. 9. The smoothed swan grid obtained from the finite element method.

624 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
In this illustration, the quality improvements are particularly evident near the large and small ends of the

connecting rod, and near the intake and exhaust ports.

The above examples are all structured, quadrilateral grids; effective smoothing could have been achieved

without any reliance on the finite element method and its underlying complexity. It is important to show

that the method is effective on structured meshes; however, this method�s development was motivated by

the desire to effectively smooth meshes without a convenient global structure. Towards this goal, an in-

herently unstructured grid was generated by randomly selecting 100 points in a square and applying
Delaunay triangulation to obtain the mesh. This approach used the triangular mesh generator Triangle,

advanced by Shewchuk [21]. Fig. 12 shows the mesh generated by the Triangle algorithm; the smoothed

version is illustrated in Fig. 13.

The triangle meshes were smoothed by specifying g12 ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
. Furthermore, Neumann values of g11

and g22 were used by the creation of a ghost element outside the boundary that reflects the values of the

neighbor element within the domain.

Again using Triangle, a planar grid in a region enclosed by an outline of Lake Superior was generated

(Fig. 14). In this example, the Triangle mesh was of rather high quality, so certain nodes of this mesh were



Fig. 11. Smoothed grid for the engine prototype.

Fig. 10. The TFI grid for an engine prototype.

G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 625
relocated to lower the quality of the initial mesh for the smoother. One of these points may be seen to the
left of Isle Royale (the large island near the center of the lake, 1/3 from the top). The smoothed version of

this grid is shown in Fig. 15.

As a measure of mesh quality, the smoothness functional discussed by Knupp et al. [22] is adopted.

Using the notation of Section 2, the smoothness functional reads

I ½n; g� ¼ 1

2

Z
D
gabðuÞ on

oua
on
oub

�
þ og
oua

og
oub

� ffiffiffiffiffiffiffiffiffi
gðuÞ

p
d2u: ð43Þ

It is customary to invert the variables in the smoothness functional by regarding the variables ðn1; n2Þ as
independent. In the framework of the tensor calculus, this inversion can be accomplished by employing the



Fig. 12. A triangular grid generated by Delaunay triangulation using 100 random points.

Fig. 13. The smoothed triangular grid from the finite element method.

626 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
relations for the transformation of the contravariant metric tensor gab. Using the same symbol for the

components of the metric tensor in two coordinate systems, one can write

gabðnÞ ¼ ona

oul
onb

oum
glmðuÞ: ð44Þ



Fig. 14. A triangular grid of Lake Superior generated with Triangle.

Fig. 15. The smoothed triangular grid of Lake Superior.

G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 627
Eq. (43) now becomes

I ½~x� ¼ 1

2

Z
D

g11ðnÞ
�

þ g22ðnÞ
� ffiffiffiffiffiffiffiffiffi

gðnÞ
p

d2n; ð45Þ

where the covariant components of the metric tensor are

gabðnÞ ¼
o~x
ona

� o~x
onb

: ð46Þ

The values of the smoothness functional, as a function of the iteration number, have been normalized to
unity by dividing the successive values by the values corresponding to the initial mesh. Table 1 lists the

normalized values for the cases considered in this section.



Table 1

Value of the normalized smoothness functional (NSF) vs. Newton iteration number for the examples considered

Grid Iteration number

1 2 3 4 5 6

Horseshoe 1.0000 0.9370 0.8591 0.8514 0.8507 0.8506

Chevron 1.0000 0.9993 0.9299 0.9272 0.9257 0.9257

Swan 1.0000 0.9063 0.8766 0.8760 0.8762 0.8762

Triangular 1.0000 0.5738 0.5738 0.5738 0.5738 0.5738

Lake Superior 1.0000 0.9117 0.9116 0.9116 0.9116 0.9116

Engine 1.0000 0.9928 0.9946 0.9950 0.9950 0.9950

628 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
In all of the examples, the finite element smoother increased the quality of the input mesh, based on the

smoothness functional metric. The magnitude of the quality increase appears to be a function of element

type (triangle vs. quadrilateral) and the quality of the initial mesh input to the finite element procedure. As

such, it is difficult to quantify the amount and rate of quality improvement in general; i.e. one must

carefully compare methods given a complete description of the specific input mesh. Given these example

results, the ‘‘fastest’’ approach to a smooth grid is achieved for spatially isotropic configurations, such as

the random collection of triangles.
The ‘‘quality’’ of a particular mesh is generally a strong function of the particular application that the

mesh is intended for. It is often a requirement that a particular mesh be free of various ‘‘computational

issues’’. For example, on the horseshoe domain, it is possible to obtain a rather ‘‘smooth’’ mesh using the

Winslow method. However, the mesh may retract from the concave sections of the geometry to the extent

that the application using the mesh could not compute on the result. Certainly, an unacceptable compu-

tational issue would be the presence of one or more elements with a negative cell Jacobian (inverted cell). It

is therefore quite important that the smoothing method prevents the formation of inverted cells if possible.

In fact, this requirement generally overwhelms the need for a mesh to rigorously satisfy some global
geometric or equidistribution principle.

The existence of an extremum principle is a sufficient condition for a mesh optimization system to exhibit

a one-to-one mapping in the final mesh [23]. The proposed finite element method reduces to a Poisson

system with mesh control functions (see Eqs. (10) and (11)). It is therefore unlikely that this method meets

this condition. Certainly, it is possible to select a target element metric prescription that will invert one or

more mesh cells. The suggested metric prescription is effective on the class of examples provided in this

section.

Fig. 16 illustrates the non-linear convergence behavior of the Newton solver on the example set. The
dashed curve without data markers is a reference indicating the line of logarithmic residual reduction. The

solver appears to converge somewhat better on the unstructured triangular meshes. However, the results on

the quadrilateral meshes are certainly acceptable. Given this limited data, the method appears to be in-

sensitive to mesh size (the engine mesh is 150 by 150 nodes, the chevron is 20 by 20 nodes). This illustration

shows the residual history out to nine Newton iterations for completeness. However, the stopping criterion

is generally a residual norm below 10�6. For this criterion, a worst-case of six Newton iterations were

necessary to achieve convergence of the method (this, on the engine example).

Table 2 compares the proposed smoothing method to classic Laplacian smoothing [6]. The Laplace
method uses point Jacobi relaxation to solve the unstructured analogue of the system

xnn þ xgg ¼ 0;

ynn þ ygg ¼ 0:
ð47Þ



Table 2

Comparison of the finite element-based method and standard Laplace smoothing for the example set

Grid CPU (ms) NSF metric

Laplace FEM Laplace FEM

Horseshoe – 5265 – 0.8507

Chevron – 4297 – 0.9257

Swan – 4687 – 0.8762

Triangular 15 156 0.9512 0.5738

Lake Superior 31 469 0.9949 0.9117

Engine 2173 147,100 1.0270 0.9950

Entries marked with ‘‘–’’ indicate failure of the method (see text).

1E-16

1E-14

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 1 2 3 4 5 6 7 8 9

R
es

id
ua

l N
or

m

Newton Iteration Number

Engine
Horseshoe

Chevron
Swan

Triangles
Lake Superior

Logarithmic

Fig. 16. Newton�s method convergence plot of the example set.

G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 629
In the table, the first column compares CPU time in milliseconds on a Pentium 2.2 GHz PC to achieve a

‘‘converged’’ normalized smoothness functional. Convergence, in this context, means that the normalized

smoothness functional has converged to four significant figures. The second column compares the nor-

malized smoothness functional for the two approaches on the example set. The table entries marked by ‘‘–’’

signify failure of the Laplace method exhibited by folding of the grid near highly curved boundaries. As

folding creates negative area elements, the smoothness metric is undefined for these examples (thus the time

to convergence is also undefined).
Laplacian smoothing is known for both its computational efficiency and low quality results. When

Laplacian smoothing did not result in a folded mesh, it was from ten to nearly 100 times faster than the

finite element approach. However, in every case, it did not provide the same level of mesh quality as defined

by the normalized smoothness functional. In the case of the engine test problem, Laplacian smoothing

actually lowered the quality of the input mesh (generated using block transfinite interpolation).

Fig. 17 illustrates the folded mesh obtained from Laplacian smoothing on the horseshoe example

problem. The behavior on the chevron and swan problems were similar. Clearly, this would not be a useful

approach on problems of this type. Negative area elements are created where the mesh ‘‘spills’’ outside the
domain at the corners of the internal obstacle. Furthermore, the mesh ‘‘pulls’’ away from the convex



Fig. 17. The smoothed grid for the rectangular horseshoe obtained from simple Laplacian smoothing.

630 G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631
corners at the upper right and left of the problem. Qualitatively comparing this result with the horseshoe

generated by the finite element approach (Fig. 5) clearly illustrates the superiority of the finite element

approach for this problem. To be fair, however, the structured mesh examples were specifically chosen by

the authors to challenge popular smoothing methods.

For the two unstructured examples (Triangular and Lake Superior), Laplacian smoothing was more
competitive. The quality was not as high as the finite element approach but the CPU speed advantage may

offset this consideration, depending on the application.
8. Conclusions

This paper proposes a finite-element approximation to solve an elliptic system of equations for gener-

ating grid coordinates. This methodology, based on finding a solution to a system of elliptic partial dif-
ferential equations, appears to be fully effective for both structured and unstructured grids. Furthermore,

the approach is general in nature. It is not necessary to include a distinction within the method for each

mesh type. As developed, it was not necessary to specify domain parameters beyond the problem geometry

for the examples considered. Further work remains in developing more rigor in the estimation of the target

element metric. It is clear that there is considerable flexibility in defining the target metric, perhaps enough

to extend the methodology to anticipate evolving solution features and to incorporate other optimization

criteria important to the solution application.

To place this development in proper context, it may be viewed as supplementing optimization methods,
discussed by Carey [24], in which the mesh redistribution is achieved through an optimization problem with

objective functions based onDirichlet integrals. Future activities would also likely include the use of objective

functions to prescribe (or refine) the local element metric to further enhance final mesh quality measures.

A generalization of this method to three-dimensional grids and surface mesh generation is also indicated.

These extensions, albeit computationally involved, are conceptually straightforward. They also will be a

subject of future investigation.



G. Hansen et al. / Journal of Computational Physics 194 (2004) 611–631 631
Acknowledgements

This work was performed under the auspices of the US Department of Energy by Los Alamos National

Laboratory under Contract W-7405-ENG-36 (LA-UR-02-7232).
References

[1] J.F. Thompson, N.P. Weatherill, Fundamental concepts and approaches, in: J.F. Thompson, B.K. Soni, N.P. Weatherill (Eds.),

Handbook of Grid Generation, CRC Press, Boca Raton, FL, 1999, pp. 1–30 (Chapter 1).

[2] P.J. Frey, P.-L. George, Mesh Generation: Application to Finite Elements, Hermes Science, Oxford, 2000.

[3] G. Springer, Introduction to Riemann Surfaces, Chelsea, New York, 1981.

[4] T. Frankel, The Geometry of Physics: An Introduction, Cambridge University Press, Cambridge, 1997.

[5] N. Lautersztajn, A. Samuelsson, On application of differential geometry to computational mechanics, Comput. Methods Appl.

Eng. 150 (1-4) (1997) 25–38.

[6] P.M. Knupp, Winslow smoothing on two-dimensional unstructured meshes, in: Seventh International Meshing Roundtable,

Sandia National Laboratory, 1998, pp. 449–457.

[7] A. Allievi, S. Calisal, Application of Bubnov–Galerkin formulation to orthogonal grid generation, J. Comput. Phys. 98 (1) (1992)

163–173.

[8] R.E. Tipton, Grid optimization by equipotential relaxation, Tech. Rep., Lawrence Livermore National Laboratory, July 1992.

[9] P. Knupp, S. Steinberg, Fundamentals of Grid Generation, CRC Press, Boca Raton, FL, 1994.

[10] J.F. Thompson, F.C. Thames, C.W. Mastin, Automatic numerical generation of body-fitted curvilinear coordinate system for field

containing any number of arbitrary two-dimensional bodies, J. Comput. Phys. 15 (1974) 299–319.

[11] D.J. Struik, Lectures in Classical Differential Geometry, Dover, New York, 1961.

[12] V. Fock, The Theory of Space Time and Gravitation, Pergamon Press, New York, 1959.

[13] J.F. Thompson, F.C. Thames, C.W. Mastin, TOMCAT – a code for numerical generation of boundary-fitted curvilinear

coordinate systems on fields containing any number of arbitrary two-dimensional bodies, J. Comput. Phys. 24 (1977) 274–302.

[14] E.B. Becker, G.F. Carey, J.T. Oden, in: Finite Elements: An Introduction, vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[15] J.N. Reddy, An Introduction to the Finite Element Method, second ed., McGraw-Hill, Boston, 1993.

[16] L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, Pergamon Press, New York, 1975.

[17] J.E. Castillo, S. Steinberg, P. Roache, On the folding of numerically generated grids: use of a reference grid, Comm. Appl. Num.

Methods 4 (1988) 471–481.

[18] X.-C. Cai, W.D. Gropp, D.E. Keyes, R.G. Melvin, D.P. Young, Parallel Newton–Krylov–Schwarz algorithms for the transonic

full potential equation, SIAM J. Sci. Comput. 19 (1) (1998) 246–265.

[19] A. Stagg, G. Hansen, A. Zardecki, Comments on applying Newton�s method to nonlinear finite element problems, Tech. Rep.

LAUR-03-6657, Los Alamos National Laboratory, September 2003.

[20] E. Chow, M.A. Heroux, An object-oriented framework for block preconditioning, ACM Trans. Math. Soft. 24 (1998) 159–183.

[21] J.R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation, Comput. Geometry Theory Appl. 22 (1–3) (2002)

21–74.

[22] P. Knupp, L. Margolin, M. Shashkov, Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian

methods, J. Comput. Phys. 176 (1) (2002) 93–128.

[23] J.F. Thompson, Z.U.A. Warsi, C.W. Mastin, Numerical Grid Generation: Foundations and Applications, North Holland, New

York, NY, 1985.

[24] G.F. Carey, Computational Grids: Generation, Adaptation, and Solution Strategies, Taylor & Francis, Washington, DC, 1997.


	A finite element method for unstructured grid smoothing
	Introduction
	Mathematical basis
	Two-dimensional boundary value problem
	Finite element approximation
	Metric tensor
	Solution procedure
	Sample results
	Conclusions
	Acknowledgements
	References


